

GRADE: XII

ANNUAL EXAMINATION 2023-24 PHYSICS-MS

Marks: 70 Time: 3h

Q.N0.	SECTION A	MARKS
1	[d]45	1
2	[b] momentum	1
3	[a]may have a unit	1
4		
5	[a]light body	1
6	[a]-40 ⁰	1
7	(c)11 km/s	1
8	[c] 90 ⁰	1
9	[b]4	1
10	(d)T ⁴	1
11	(a)is zero	1
12	c)40 N	1
13	[c]both will reach simultaneously	1
14	d) radiation	1
15	[c]λ/2	1
16	a) Along the direction of wave propagation	1
17	[a]	1
18	[a]	1
	SECTION B	
18	T = mg = 30 (10) = 300 N	2
	T-mg = ma (climbing up)	
	a = 1 - mg/m	
	d=300-25(10)/25	
10		
19		Z
	P Final state	
	Initial state	
	PALA	
	V V_1 Volume V_2	
20	$0 = u^2 - 2gs$	2
	$\Rightarrow 0 = (u \sin \theta)^2 - 2gs$ $\Rightarrow 2gs = (u \sin \theta)^2$	
	$\Rightarrow 2gs = (u \sin \theta)$	
	$\frac{1}{2g}$	
	$h = \frac{1}{2g}$	

21	V=√gr		
	V=√10*6400		
	V=8000 m/s		
22	Diagram or consideration $F \propto -x$ F = -kx(1) $W_s = \int_0^{x_m} F dx$ (2) $W_s = -\int_0^{x_m} kx dx$ (3) $W_s = -k \left[\frac{x^2}{2}\right]_0^{x_m}$ $W_s = -k \left[\frac{x^2}{2}\right]_0^{x_m}$ (4) This work done is stored as the e spring. $U = \frac{1}{2}kx^2$ OR Statement Diagram or consideration $v^2 - u^2 = 2as$ Multiplying both the sides by 1/2 $\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = mas$ By Newton's second law, ma = I Therefore $\frac{1}{2}mv^2 - \frac{1}{2}m$ Kf - Ki = W	2	
23			2
	Damped oscillation	Undamped oscillation	
	The oscillations die down over time due to the presence of damping.	The amplitude of oscillations remains unaffected over time.	
	Damped oscillations eventually decay to a halt over time.	Energy remains conserved and the oscillations do not die out.	
	The amplitude is not constant.	The amplitude remains constant.	
	All practical oscillations are damped to some degree.	Undamped oscillations don't exist practically.	
24	A cost (but + 0)		

-	1	1
25	P= P=hdg	
	$M^{1}L^{-1}T^{-2} = M^{1}L^{-1}T^{-2}$	
26	F=6 πr ἡ v Proof: When the body acquires terminal velocity, FT+FV=W Putting values, FT=4/3πr3pgFV=6πηrvW=4/3πr3pog	
	We get, 4/3πr3ρg+6πηrv=43πr3ρog 6πηrv=43πr3(ρο–ρ)g v=2r2(ρο–ρ)g/9η	
27	pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere.	
	Second force is 10 times original force $F_1 = P_1A_1$ $area A_2$ $P_1 = \frac{F_1}{A_1}$ $P_2 = \frac{F_2}{A_2}$ $P_2 = \frac{F_2}{A_2}$ $P_2 = \frac{F_2}{A_2}$ $P_1 = p_2$ $F_1/a_1 * a_2 = f_2$ $F_2 = f_1/a_1 * a_2$ $Mg = mg^* a_2/a_1$	
28	Elastic collisions occur when both the momentum and kinetic energy are conserved, similar to how billiard balls bounce off each other and move at the same speeds as before. Inelastic collisions happen when only the momentum is conserved but not the kinetic energy.	
	m1u1 + m2u2 = m1v1 + m2v2 $\therefore m(u1-v1) = m(v2-u2) \implies (Equation A)$ Kinetic energy formula for elastic collisions is: 1/2(m1u12) + 1/2(m2u22) = 1/2(m1v12) + 1/2(m2v22) $\therefore m1(u12-v12) = m2(v22-u22)$ $\therefore m1(u1+v1)(u1-v1) = m2(v2+u2)(v2-u2) \implies (Equation B)$ Divide Equation B to Equation A, u1 + v1 = v2 + u2 $\therefore u1 - u2 = -(v1 - v2)$	
29	$Y = FL_0 / A\Delta L$	

$$Y = mgl/(mr^{2}l)$$

$$M = 14.1 \times 10^{-2} kg$$
30
$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

$$f = \pi/5$$
(b)Max.Speed=Aw
V=1 m/s
(c)a=Aw²
a=10 m/s²

31
$$T - mg cos\theta = mv2L$$
The torque tends to bring the mass to its equilibrium position,
$$T = mgL \times \sin\theta = mgsin\theta \times L = I \times a$$
For small angles of oscillations sin $\theta \approx \theta$,
Therefore, Ia = -mgL θ

$$a = -(mgL\theta)/I$$

$$-\omega a^{2} \theta = -(mgL\theta)/I$$

$$\omega a^{2} = (mgL)/I$$

$$\omega a = \sqrt{(mgL/I)}$$
Using I = ML², [where I denote the moment of inertia of bob]
we get, $\omega a = \sqrt{(g/L)}$
Therefore, the time period of a simple pendulum is given by,

$$T = 2\pi/\omega_{0} = 2\pi \times \sqrt{(L/g)}$$
(b)length
(c) $T = 2\pi \times \sqrt{(L/g)}$
L=1.01 m
32
Streamline flow is a fluid's smooth flow with a velocity less than
a critical velocity. Turbulent flow is uneven, unstable and exceeds
the fluid's critical velocity.
$$(P_{1} - P_{2})dv = \frac{1}{2}\rho dv (v_{2}^{2} - v_{1}^{2}) + \frac{1}{2}\rho dv g(y_{2} - y_{1})$$

$$\Rightarrow (P_{1} - P_{2}) = \frac{1}{2}\rho (v_{2}^{2} - v_{1}^{2}) + \frac{1}{2}\rho v_{2}^{2} + \rho gy_{2}$$
From the equation of continuity.
$$A_{1}v_{1} - A_{2}v_{2}$$
From Bernoulli's theorem,
$$P_{1} + \frac{1}{2}v_{1}^{2} = P_{2} + \frac{1}{2}v_{2}^{2}$$
or, $P_{4} - P_{2} = \frac{1}{2}(v_{2}^{2} - v_{1}^{2})$

$$\Rightarrow (P_{1} - P_{2}) = \frac{1}{2}(v_{2}^{2} - v_{1}^{2})$$

$$\Rightarrow P_{1} + \frac{1}{2}v_{1}^{2} = P_{2} + \frac{1}{2}v_{2}^{2}$$
From Bernoulli's theorem,
$$P_{1} + \frac{1}{2}v_{1}^{2} = P_{2} + \frac{1}{2}v_{2}^{2}$$
or, $P_{4} - P_{2} = \frac{1}{2}(v_{2}^{2} - v_{1}^{2})$

$$\Rightarrow (P_{1} - P_{2}) = \frac{1}{2}(v_{2}^{2} - v_{1}^{2})$$

$$\Rightarrow (P_{1} - P_{2}) = \frac{1}{2}(\frac{A_{1}^{2}v_{1}^{2}}{A_{2}^{2}} - v_{1}^{2})$$

$$\Rightarrow (P_{1} - P_{2}) = \frac{1}{2}(\frac{A_{1}^{2}v_{1}^{2}}{A_{2}^{2}} - v_{1}^{2})$$

$$But, A_{1}v_{1} = \Delta V$$
where ΔV → Volume that flows through a cross-section per second.

 $-y_{1})$

$$\Delta V = A_1 A_2 igg[rac{2gh}{A_1^2 - A_2^2} igg]^{1/2}$$
.....(11.19)

33	Acceleration of the particle, performing S.H.M is given	
	by $\alpha = -\omega_2 y$	
	where ω is the angular velocity, and y is the displacement of	
	particle.	
	now workdong by particle - SE ody	
	now, workdone by particle $- \rightarrow r \rightarrow dy$	
	as we know, acceleration and displacement are in opposite	
	directions in case of S.H.M	
	so, W=-mw2ydy	
	where m is the mass of the particle.	
	$W = -m\omega_2 Jydy$	
	$W = -12m\omega_2y_2$	
	so, potential energy = -W	
	$=12m\omega_2y_2$	
	we know, $\omega = 2\pi\eta$	
	so, P.E= $2\pi 2\eta 2my_2$ (1)	
	velocity of particle, $v = \omega A \cos \omega t$	
	or, $V = \omega V \underline{A2 - y2}$	
	so, kinetic energy of particle, K.E=12mv ₂	
	hence, K.E=12m ω_2 (A2-y2)	
	but $\omega = 2\pi\eta$	
	SO, K.E= $2\pi 2\eta 2m(A2-y2)$ (2)	
	so, total mechanical energy = K.E + P.E	
	$=2\pi 2n^{2}m^{2}M^{2}$	
34	i [d]	
	ii[a] iii[d]	
35	iv[c]	
55	i[d] ii[b]	
	iii[d]	
	וענכן	